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Abstract. The quantum algebras associated with the R-matrix obtained from the two 
parameter free fermion model are examined. It is shown that in addition to U.,Jgl(l, I)) 
there exists another algebra iT&l(l, 1)) which is isomorphic to U&(L I ) )  as an algebra 
but has a different Hopf struclure. iJq,,(gl(l, I ) )  does not have a classical limit and i s  
related to U,(sl(Z, C)) at a root of unity ( p  = i, i2 = -1). 

It is known that representations of the braid group can be obtained from the Boltzmann 
weights of solvable models. From the two parameter (we are refemng to parameters 
other than the spectral one) free fermion model, one obtains the following R-matrix 

1 0  q-q- '  s-' ; J 
0 d(s ,s)=  

0 0  0 -q-' 

which is a solution of 

R 1 2 R 2 3 R 1 2  = R 2 3 R U R 2 3  (2) 

where the subscripts indicate the action on the triple tensor product VB VB V where 
V is a two-dimensional complex vector space. The two parameter model is obtained 
from the one parameter case [l] (see for instance the one parameter model (1, -1) in 
Deguchi's paper) by a simple symmetry breaking transformation [Z]. R(q ,  s) was first 
reported in [3] where it had been obtained by solving (2) directly. 

It is well known [4-61 that d(q. s = 1) is related to the one parameter deformation 
of GL(1,l). Less known is the fact that there exists another symmetry [7-101 associated 
with R(q. s = 1 )  that resembles that of GL(l.1) but for which there is no classical 
limit. The purpose of this letter is to examine the two parameter case. Although our 
main focus is the Hopf algebras defined in the space dual to that of the quantum 
groups, it will prove useful to begin the analysis at the level of the quantum spaces 
where the symmetries involved are more transparent. We begin by recalling some of 
the features of the one parameter case as discussed in [E]. 
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In Manin's approach, quantum groups coact on a set of quantum spaces (quadratic 
algebras). In his treatment of the general linear supergroup [ll] he considers a pair 
A and A* of quantum spaces where A* is dual to A. The algebraic structure he obtains 
corresponds to particular definitions of duality and rule for the multiplication in the 
tensor product of two algebras. The implications, in the one parameter case (4,. = q 
for all m, n), of a different set of definitions were examined in [8]. The space dual to 
that of the quantum group was defined for each set of definitions. In the two-dimensional 
case iwo distinct aigebras were obtained: ii,(gi(i, i j j  and the other which we denote 
uJgI(l.1)). The latter was shown to be isomorphic to Uq(gl(l, 1)) as an algebra while 
having a different Hopf structure. nq(gl(l,  1)) does not have a classical limit and.is 
related to uT,(sl(2, C)) at a root of unity (p=i ,  i2=  -1). 

The two parameter case considered here is of the non-standard type [12]. The 
novelty in such cases is that one must consider the coaction on a set of two quantum 

see also [13]). Let us introduce the quantum spaces A and B defined as follows: 
spices that Ire g'n'T?!!y distinct !ram e l& ather (one I s  llnt the du.1 nf the ether, 

A = k ( x i ,  x ~ ) / ( x : ,  xix,-s-'qxzxI) (3 )  

B =  k(x ,  9 X Z ) / ( X : ,  x,xz-qsxzxi) (4) 

where k(x ,  , x,) means an associative k-algebra freely generated by x ,  and x,; k is the 
fie!& :ha: ,4,B a:e gene;atcd bj. ('e-q.')(x&)=!j and ( L e T - q . ' ) ( x 9 x ) = g  
respectively. In what follows we shall consider the coaction of a bialgebra on a pair 
of quantum spaces which includes A and the dual of B. (Note that in the case s = 1 
we have A = E.) Our main objective is the study of the implications (with main focus 
on enveloping algebras) of two distinct definitions of duality accompanied by particular 
choices for the multiplication rule in the tensor product of two algebras. 

Let us first consider the case where duality is defined through the following pairings 

(x" ;x , )=S: ,  ( x * O x ' ;  x,Ox")=S;Sl,  ( 5 )  

Denoting by E! the dual of B it follows from ( 5 )  that 

B !  = k ( x l ,  x ' ) / ( ( x ' ) ~ ,  x 'x2+  q- ls - 'x2xl )  (6) 

We now define a bialgebra with geneators t: (m, n = 1.2) which coacts on the pair 
(A, Slj by requiring that the foiiowing maps 

2 2 

S(x,)= 1 +,,oxj S ( x k ) =  r :Ox '  (7) 
j = 1  1-1 

be homomorphisms of A and E! respectively. The multiplication rule in the tensor 
product of two algebras is defined to be 

(8) , ^ h L \ / ^ h  A\ -/-"a 1.2, ," 0 U , \ C 0  U, - \uc v U" ,. 
Let 

The quadratic relations satisfied by the t; can be summarized as follows: 

RTIFT,P = €'TIPTI R (9jL 

where P is the permutation operator, R = PR and TI = TO 1. The explicit form of 
relations that follow from (9) can be found in [13]. We denote by An the associative 
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algebra over C with generators 1 and f; (m,  n = 1,2) which satisfy (9). The coproduct 
is 

2 

A ( t ; ) =  f",f: A ( l ) = l O l .  (10) 
X - l  

A representation p of A, is p( f L); = R i k .  The coproduct is an algebra homomorphism 
provided one uses the rule (8) which is of course not surprising; however, later it will 
be shown that there exists another bialgebra one can associate to R(q, s) for which 
the multiplication rule differs from (8). Following Fadeev ef a/ [14] we now define 
nq,s(gl(l, 1 ) )  as a subalgebra of the dual to A,; iJTu,. is generated by the unit element 
1' and the generators L?,!(m, n = 1.2) which are defined by the following duality 
relations: 

(1; TIT2 ... Tk)=lok (L'"'; T IT2 , .  . T,)=R',"R$*'. , . R',') (11) 
where 

and I is the unit matrix. T,=IQ ... I O T O I O  ... Q I  (k tensor product sand  T i n  
the m position) and R!,? act non-trivially on factor number 0 and m in the tensor 
product !@(*+" and coincide there with the matrix R'*) defined as follows: 

R-' (12) R(+)=  PRP R'-'= 

R P ( L [ * ) o I ) P ( L ( * ) Q I )  = ( L(*)o I)P(L(%I)PR 
It follows from (11) that LE'= L',;'=O and the generators satisfy 

(13) 
RP(L'+'OI)P(L'-'OI) = ( L ( - ) O I ) P (  L'"0 1)PR 

with the coproduct and antipode S defined as follows: 

A(LE,!) = 1 LE20 LE) S(L'*')L'*'= I. 
x 

A representation p is 

mn k -  k n  p(Li;); =(R- ' )" '  m k .  (15) p(L(+')' -RI" 

We introduce the generators H, X' and Z which satisfy the following relations: 
[H, X*] = +2X*.  [ H ,  Z] =l,Z, X"] =O. We first connect them with U,=,(sl(2, C)) by 
making the following identification (i2 = -1): 

(+)- -(H-Z)/2 -(H+Z)/2 .(H-Z) 
I ,  - 4  S L22 - 4 S I L(+)-  - (H+Zl/2 -(H-Z)/2 

(-) - (H-Zl/2 - ( H + Z ) / 2  i-(H-Z) 
~ ( - 1 -  I I  - 4  (H+Z)/2S-(H-Z)/2 L22 - S 

Defining a = H - ( 1 + 2 i t ) / n ) Z  the substitution of (16) in (13) gives ( ¶ = e ? )  
. d  . - A  
I - 1  

1-1 
(X*)Z = 0 [X', x-I =- (17) 
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Note that for s =  1 all the relations in (17) except (X*)'=O are those of U,(sl(2, C)) 
when p = i (the generators being X* and H). This connection is consistent with results 
[7] obtained previously where it was shown that R(q,  s = 1) is associated to the 
two-dimensional highest weight representation of U,(s1(2, C)) when p = i. For sake of 
comaring with U,Jgl(l, 1)) it will prove useful to consider a further change of basis 

uq(gl(l, 1)) is therefore an algebra whose generators H, $+, $- and Z satisfy the 
following relations 

[ H, +*I = +2** [Z, **] = [ H ,  Z ]  = 0 

$2 - 1 
( = 0 *+*-+*-*+=r 

4 - 1  
s(@) = -q,* i-(H-ZJ -2 4 .  A(*") = s * 2 / 2 0 * * +  **@i'H-z'qZsf"/2 

Inverifyingthat (19) follows from (18) weusethefact that i2H=(-1)H=(-1)H~Z 4 .  '" 
(11) that L$T)L$;) is identical to the unit element 1' for s = -1. Thus i2H = q2? We 
stress that the coproduct is an algebra homomorphism provided one uses the rule (8) 
and for the antipode we have SCAB) = S ( B ) S ( A ) .  i t  is important to notice that the 
coproduct does not become cocommutative when q = s = 1 (i'H-Z) does not reduce to 
unity in such a limit) which exhibits the fact that this symmetry does not have a classical 
limit (its relation to U,=,(s1(2, C)) is also a manifestation of this). We now turn to 

We will assign a Z,-degree toAthe elements of the algebras considered. The degree 
of an element b will be denoted b. Let i ,  = x '̂ = f: = ?: = 0 and i' = g2 = ?: = f: = 1. Let 
us now consider the case where duality with respect to the quadratic algebra B described 
in (4) is defined through the following pairings 

N~~ L(+)L(-) - -(H-Z) - -(-l)-(H-zJ for s = -1. It follows from the duality condition 
I ,  1 1 - s  

uq,5(gKL 1)). 

(x"; xm)= 8: ( x k  0 x'; x", 0 X") = ( - 1 )""-s:sl,. 

" - . % , * , * / , , , * , , * * - y  I5 - 11-1 . J \ l I ~ . , l \ 2  ..~..L"-I.-1..2..l\ 0 **, .  (2!) 

(20) 

Denoting by h the dual of B it follows from (20) that 

A bialgebra with generators tk (m, n = 1,2) which coacts on the pair (4, h)  can now 
be defined by requiring that the maps (7) be homomorphisms of A and B respectively. 
Choosing the multiplication rule in the tensor product of two algebras to be 

( a @ b ) ( c @ d ) = ( a c @ b d ) ( - I ) "  (22) 
I. c ~ , , ~ ~ - ~ ~  ..~-. _ . ~ ~  ~~-..A:.~.. ..*:.c.> L.. .L. .".. --- .L^ --"A-> ":-" ^F II roiiow~ mar me quaoraric relations sausiicu vy LILT I , , ,  s aic LWC giauc;o v r i ~ i w i  vi 

(9) which one obtains from (9) by making the following substitutions 

P +  P R + d  
where 

r 1 0 0  o - 0 0 1  0 
0 1 0  0 

P =  I 
Lo 0 0 -1 
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is the graded permutation operator and = pR(q, s) is a solution of the graded 
Yang-Baxter equation. We denote by A, the associative algebra over C with generators 
1 and 1; (m, n = 1,2) which satisfy the graded version of (9). The coproduct is defined 
as in (10) and is an algebra homomorphisms provided one uses the rule (22). In order 
to define Uq,s(gl(l, 1 ) )  we now consider the space dual to A,. U , ,  is defined as a 
suhalgebra of the dual to A, which is generated by the unit element 1' and the generators 
LE'(k, I = 1,2). The duality condition that defines U , ,  as well as the quadratic relations 
satisfied by the generators are the graded versions of ( 1 1 )  and (13) which are obtained 
through the substitutions described in (23). In deriving these results one follows 
essentially the same arguments as the ones used by Fadeev er a/ in establishing (13) 
but here one exploits the fact that E is a solution of the graded Yang-Baxter equation. 
See earlier works for more details [S, E]. The coproduct and antipode are as defined 
in (14); however, they are algebra homomorphisms provided one)ses the rule (22) 
and S(AB)= S(B)S(A)(-l)". The panty is i(*)- , I  - i(*'- 22 - 0  and Li:'= Li;)= I .  The 
fundamental representations of A, and U , ,  are the graded version of those of AR and 

Consider the generators H, $', $- and Z such that [H, $7 = *2$* and [Z, $*I = 
Uq,*(R+E).  

[Z, HI = 0 and make the following identification 
L(+I  - - ( H + Z ) / 2 S - ( H - Z l / 2  ~i;l= q - ( H - Z i / 2  S - ( H + Z l / 2  

~ ( - 1 -  ( H + Z ) / 2 S - ( H - Z l / 2  

L'+i- + - H / 2  - ( H + Z l / 2  L & I =  ( 4  - q - l ) $ - s - H / 2 q ( H - Z ) / 2  

I I  - 4  

I ,  - 4  (-1 - (H -Z1 /2  - ( H + Z ) / 2  
L 2  - 9  S 

(24) 
It follows from (24) that Uq,s(gl(l, 1 ) )  is generated by H, $* and Z which satisfy the 
following relations 

12 - ( 4 - 4 - ' ) $  s 4 

[ H ,  $*I = +2+* [Z,$*]=[Z,H]=O ( * ' ) 2 = 0  

A($*) = s * ~ / ' @  $'+ $ ' @ ~ ' ~ / ~ q ~  S ( $ * ) = - $ , " q - Z  
We stress that-thecoproduct is an algebra homomorphism provided one uses (22) 
($'= $- = 1, H = Z = 0). In contrast to the previous case the coproduct is cocommuta- 
tive in the limit q = s = 1. Note that s appears only in the coproduct, a phenomenon 
which has been observed in an earlier work on GL(2) [lS]. The two parameter 
deformation of GL(1,l) has been recently discussed by Dabrowski and Wang [16]. 
The graded versions of (9) and (13) are equivalent to the relations they give (see their 
equations (8) and (19)). They express U,,,(gl(l, 1)) in a different basis and do not 
discuss U,,.. Equations (19) and ( 2 5 )  show that as algebras U , ,  and Uq,s are isomorphic 
but differ in their coproduct and antipode (they have different Hopf structures). This 
is to be expected since the multiplication rules (8) and (22) are different. 

One of us (MC) wishes to thank Professor M HavliEek, Dean of the Faculty of Nuclear 
Sciences and Physical Engineering of the Czechoslovakia Technical University in 
Prague, for the kind hospitality shown. 
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